產品介紹
HOME  keyboard_arrow_right  產品介紹  keyboard_arrow_right  細胞培養  keyboard_arrow_right  類器官培養關鍵添加劑  keyboard_arrow_right  Afamin/Wnt3a
Afamin/Wnt3a
在類器官(cancer、tissue….)的培養基中,Wnt3a為常用的條件培養基之一。
已知Wnt信號傳導參與幹細胞 (stem cell) 的早期發育,細胞維持與再生,以及癌細胞 (cancer) 的生成,Wnt信號傳導在這些生長和維持的過程中起重要的作用。
特別的是Wnt3a是維持腸上皮細胞中Lgr5+幹細胞增殖的必需生態成分 (essential niche component),並且用於生產各種消化器官,例如小腸,大腸,胃,胰臟和肝。
但因Wnt3a是一種脂溶性蛋白質,在無血清培養基 (serum-free medium) 中會形成團聚而不能充分發揮其活性。
使用Afamin和Wnt3a複合物進行培養,讓您無須加入FBS,又可改善Wnt3a活性/穩定度不佳的問題,適用長期培養,相信能為您的實驗帶來更好的結果。
產品特色
  • 產品特色
  • 產品比較
  • 產品規格
  • 參考文獻
  • 高穩定性 Stabilized Wnt3a

  • 高活性 High Activity

  • 無血清培養 Serum Free

使用Afamin/Wnt3a CM協助類器官長期培養

以大腸類器官為例,與使用市售Wnt3a或含有血清的Wnt3a的培養方式相比,Afamin / Wnt3a CM可以進行更加長期穩定地培養。

 

Afamin有助於提高Wnt3a的穩定性

Afamin作為血清的替代物可以穩定Wnt3a的活性,在無血清培養基中也能維持較高的穩定性,有助於類器官的長期培養。

 

Afamin / Wnt3a CM具有較高的活性

通過TOP FLASH實驗發現,與市售純化的Wnt3a蛋白相比,Wnt3a在與Afamin 結合後具有更高的活性。

 

使用Afamin/Wnt3a CM持續培養LGR5+細胞

在培養Lgr5啟動子調節下的td Tomato螢光蛋白的類器官株時,同時使用Afamin/Wnt3a CM和市售的Wnt3a培養基進行培養比較,結果使用Afamin/Wnt3a CM培養的LGR5+細胞存活率更高。

以往在類器官培養使用的Wnt3a,一般是市售的重組Wnt3a或是由ATCC等處以可表達Wnt3a的細胞進行培養後得到含有Wnt3aConditioned Medium。多數情況下,使用這些Wnt3a進行類器官培養時,由於Wnt的活性並不好,容易導致培養失敗。

此外,在使用細胞株表達蛋白的Conditioned Medium時,為了維持Wnt3a活性,大多會在培養基中加入血清,但是血清的存在,會對類器官的增殖及培養產生一定影響。 Afamin/Wnt3a CM已被驗證在無添加血清時也能保持Wnt的活性,優化類器官的培養。

 

Organ

Title

PMID

Intestine

Normal tissue

E. Mihara, et al., Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin., eLife 5 (2016)

26902720

S. Sugimoto, et al., Reconstruction of the human colon epithelium in vivo., Cell Stem Cell 22 (2018)

29290616

S. Sugimoto, et al., Organoid Derivation and Orthotopic Xenotransplantation for Studying Human Intestinal Stem Cell Dynamics., Methods Mol Biol 2171 (2020)

32705652

N. Sasaki, et al., Development of a Scalable Coculture System for Gut Anaerobes and Human Colon Epithelium., Gastroenterology 159 (2020)

32199883

Zwiggelaar RT et al. LSD1 represses a neonatal/reparative gene program in adult intestinal epithelium. Sci Adv. 2020 Sep 11;6(37):eabc0367. doi: 10.1126/sciadv.abc0367. Print 2020 Sep

32917713

M. Fujii, et al., Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition., Cell Stem Cell 23 (2018)

30526881

S. Sugimoto, et al., An organoid-based organ-repurposing approach to treat short bowel syndrome., Nature 592 (2021)

33627870

Ulcerative colitis

K. Nanki, et al., Somatic inflammatory gene mutations in human ulcerative colitis epithelium., Nature 577 (2020) 

31853059

Tumor

H. Oshima, et al., Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis., FASEB J 33 (2019)

30156908

K. Kawasaki, et al., Chromosome Engineering of Human Colon-Derived Organoids to Develop a Model of Traditional Serrated Adenoma., Gastroenterology 158 (2020)

31622618

T. De Oliveira, et al., Effects of the Novel PFKFB3 Inhibitor KAN0438757 on Colorectal Cancer Cells and Its Systemic Toxicity Evaluation In Vivo., Cancers (Basel) 13 (2021)

33671096

T. Nishina, et al., Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer., Nat Commun 12 (2021) 

33863879

Stomach

Normal tissue

K. Nanki, et al., Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis., Cell 174 (2018)

30096312

Tumor

K. Nanki, et al., Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis., Cell 174 (2018)

30096312

K. Togasaki, et al., Wnt Signaling Shapes the Histologic Variation in Diffuse Gastric Cancer., Gastroenterology 160 (2021) 

33217450

Pancreas

Normal

T. Seino, et al., Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression., Cell Stem Cell 22 (2018)

29337182

Tumor

K. Miyabayashi, et al., Intraductal transplantation models of human pancreatic ductal adenocarcinoma reveal progressive transition of molecular subtypes., Cancer Discov 10 (2020)

32703770

JS. Roe, et al., Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis., Cell 170 (2017)

28757253

H. Tiriac, et al., Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment., Gastrointest Endosc 87 (2018)

29325707

H. Tiriac, et al., Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer., Cancer Discov 8 (2018)

29853643

Ureteric

Bud

iPSC-

Derived

S. Mae, et al., Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential., Cell Reports 32 (2020)

32726627

Ovary

Tumor

Y. Nanki, et al., Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing., Scientific Reports 28 (2020)

32724113

Gastroenteropancreatic

neuroendocrine

neoplasms(GEP-NENs)

K. Kawasaki, et al., An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping., Cell 183 (2020)

33159857

Alveolus

Normal tissue

T. Ebisudani, et al., Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening., Cell Rep 35 (2021) 

34038715

Salivary gland

Normal tissue

D. Kim, et al., 3D Organoid Culture From Adult Salivary Gland Tissues as an ex vivo Modeling of Salivary Gland Morphogenesis., Front Cell Dev Biol 9 (2021)

34458260